Given the roots of the Quadratic Equation:
![\begin{gathered} x=5 \\ x=-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dh50un1rtfgliyvr9ozue8yx1p4nr5hz4c.png)
You can write the Quadratic Equation in Factored Form:
![(x-5)(x+5)=0](https://img.qammunity.org/2023/formulas/mathematics/college/z2lfh73df7sl1ur9s2z8rsmry3oeo52d33.png)
Now you need to multiply the binomials using the FOIL Method, which states that:
![\mleft(a+b\mright)\mleft(c+d\mright)=ac+ad+bc+bd](https://img.qammunity.org/2023/formulas/mathematics/college/ovf1vcmzbcje770sni8pcylweyg9inbu5g.png)
Then:
![(x)(x)+(x)(5)-(5)(x)-(5)(5)=0](https://img.qammunity.org/2023/formulas/mathematics/college/gy4vzk912h1zq1v8oejxzdqhyeoonekaxe.png)
![x^2+5x-5x-25=0](https://img.qammunity.org/2023/formulas/mathematics/college/h1dvq698gygbwb571mc6xh33hs8o9hir8u.png)
Adding the like terms, you get:
![x^2-25=0](https://img.qammunity.org/2023/formulas/mathematics/college/w7e93c5gc95guvmr1rfvgloyvk8wpw9uqh.png)
Hence, the answer is: Second option.