
Step-by-step explanation
to shift a function left, add inside the function's argument: f(x + b) shifts f(x) b units to the left. Shifting to the right works the same way, f(x - b) shifts f(x) b units to the right.
![\begin{gathered} f(x)\Rightarrow shifted\text{ b unit to left }\Rightarrow f(x+b) \\ f(x)\operatorname{\Rightarrow}sh\imaginaryI fted\text{ b units to right}\Rightarrow f(x-b) \end{gathered}]()
Step 1
given

if the function is shifted three units to the left then

hence

therefore, the answer is

I hope this helps you