Step-by-step explanation:
Linear escale factor 1.
In this case the original volume of the parallelepiped is:
![Volume=4*2*3=24\text{ u}^3](https://img.qammunity.org/2023/formulas/mathematics/college/5avydocx5gr9ng9gfkwdcwhoejzoxglymx.png)
24 cubic units and the new volume must be:
![NewVolume=\left(4*1\right)\left(2*1\right)\left(3*1\right)=24u^3](https://img.qammunity.org/2023/formulas/mathematics/college/veytdpcfq1olkkly1x2ly4qwqdez7cmrqk.png)
So in this case the ratio of volumes is 1:1
Linear escale factor 2.
In this case the original volume of the parallelepiped is the same: 24 cubic units.
The new voume must be:
![NewVolume=\left(4*2\right)\left(2*2\right)\left(3*2\right)=8*4*6=192u^3](https://img.qammunity.org/2023/formulas/mathematics/college/oftbgwxf5uk6x3r0my926jk2ow3a4f3vpa.png)
So in this case the ratio of volumes is 24:192, that is 1:8
Linear escale factor 3.
In this case the original volume of the parallelepiped is the same: 24 cubic units.
The new voume must be:
![NewVolume=(4*3)(2*3)(3*3)=12*6*9=648u^3](https://img.qammunity.org/2023/formulas/mathematics/college/ypie1v9fxaihq5c7baqnt8skghv2wzvc1w.png)
So in this case the ratio of volumes is 24:648, that is 1:27
Linear escale factor 4.
In this case the original volume of the parallelepiped is the same: 24 cubic units.
The new voume must be:
![NewVolume=(4*4)(2*4)(3*4)=16*8*12=1536u^3](https://img.qammunity.org/2023/formulas/mathematics/college/1ahjhcsqgcqm4j7mycka3217q8fwms91xz.png)
So in this case the ratio of volumes is 24:1536, that is 1:64
Linear escale factor r.
In this case the original volume of the parallelepiped is the same: 24 cubic units.
The new voume must be:
![NewVolume=(4*r)(2*r)(3*r)=4r*2r*3r=24r^3\text{ }u^3](https://img.qammunity.org/2023/formulas/mathematics/college/ihd8vto8x8ektynrogs3wa0w612zu9hs7j.png)
So in this case the ratio of volumes is 24:24r^3, that is:
![1:r^3](https://img.qammunity.org/2023/formulas/mathematics/college/mfcfy2nmfz0a1yurk6w72ntxwj6te17f43.png)