Answer:
The value of the 17th term is;
![a_(17)=-44032](https://img.qammunity.org/2023/formulas/mathematics/college/3vbut1j2bd19trmeg31r5qm0kymyyfb3v8.png)
Step-by-step explanation:
Given that;
For a given geometric sequence, the 9th term is equal to
![a_9=-(43)/(64)](https://img.qammunity.org/2023/formulas/mathematics/college/34jnjdbplq4pes8xsuj1etiggiup0241m9.png)
the 13th term, Q13, is equal to - 172.
![a_(13)=-172](https://img.qammunity.org/2023/formulas/mathematics/college/kztsj5wov10p6836cipjdh0g2i8l966hsc.png)
Recall that for geometric progression;
![(a_(13))/(a_9)=r^4](https://img.qammunity.org/2023/formulas/mathematics/college/svochbqc9nie8pgyjm97jhzsenr0l6mji3.png)
where r is the common ratio
substituting the given;
![\begin{gathered} r^4=(a_(13))/(a_9)=(-172)/((-(43)/(64))) \\ r^4=(-172)/((-(43)/(64)))=172*(64)/(43) \\ r^4=4*64 \\ r^4=256 \\ r=\sqrt[4]{256} \\ r=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ud0dkaeghsbmgrf0sw2yee9j4psp0wjooh.png)
To find the value of the 17th term;
![\begin{gathered} a_(17)=a_(13)* r^4 \\ a_(17)=-172*4^4 \\ a_(17)=-44032 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eagkye7df9mqih1bww8a8ykoermc2z58i7.png)
Therefore, the value of the 17th term is;
![a_(17)=-44032](https://img.qammunity.org/2023/formulas/mathematics/college/3vbut1j2bd19trmeg31r5qm0kymyyfb3v8.png)