The first step to having a good solution in the present question, building an equation that gives us the number of Gallons (G) in the function of rate miles/gallons in the city (C) and miles/gallons in the highway (H).
We know that in typical weeks Jon drives 20miles in the city (Dc) and 60 miles on highway (Dh) (Going + Coming Back from his parent's house).
The rates of the number of gallons per mile are calculated as follows:
![\begin{gathered} C=(20)/(G_c)=\frac{\text{Distance}}{\text{Gallons used}}\to G_C=(20)/(C) \\ \\ H=(60)/(G_H)=\frac{\text{Distance}}{\text{Gallons used}}\to G_H=(60)/(H) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gxl3sjk853zk93i6puv7rmtrlnz3374nzk.png)
Anthe total number of gallons is equal to the sum of each case:
![\begin{gathered} G=G_H+G_C \\ \\ G=(20)/(C)+(60)/(H) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/77aqqkpdah56ycloepvkpmhj31t1scs5xd.png)
Now, to solve the problem, we just need to substitute the values as follows:
A - I)
The present car has the given rates:
![\begin{gathered} H=22\text{mpg} \\ C=16\text{mpg} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eiybd1p3q745ff3fu1jbh9s3bl93arpbnl.png)
Substituting:
![\begin{gathered} G_1=(20)/(16)+(60)/(22) \\ G_1=1.25+2.73 \\ G_1=3.98\text{ Gallons} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ay3hz13za0ibbj17s023593yz83bz8i78c.png)
A-II)
The new values are:
![\begin{gathered} H=35\text{mpg} \\ C=28mpg \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cgy5gaod8a6sgqa9cj7nu3a3v0rtdxblds.png)
Substituting, we have:
![\begin{gathered} G_2=(20)/(28)+(60)/(35) \\ G_2=0.72+1.71 \\ \\ G_2=2,43\text{ Gallons} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dapu8x5x2jav1b5fygvv8qltjkfyj02m4g.png)
A-III
The difference for 52-week year is equal to the difference for a single week times 52, as it is calculated as follows:
![\begin{gathered} \Delta G=((20)/(16)+(60)/(22))-((20)/(28)+(60)/(35))_{} \\ \Delta G=1.55\text{ Gallon} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xah5wkzof4cwtokwr0j68ybdvt55s8wnr9.png)
![\begin{gathered} \Delta G_{\text{Total}}=52*\Delta G \\ \\ \Delta G_{\text{Total}}=80.53\text{ Gallons} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/14f0jppisqgd4bh3v3vantpkgcs2p1201q.png)