Answer:
792 ways
Explanation:
The number of students in the class = 12
If 5 of them are to go on the field trip, since the order doesn’t matter. the number of ways that these children could be chosen can be calculated using combination.
![^(12)C_5](https://img.qammunity.org/2023/formulas/mathematics/college/7hd27mt9s6kmx6lgxka4u69e7zd24ixw3e.png)
Recall:
![^nC_r=(n!)/((n-r)!r!)](https://img.qammunity.org/2023/formulas/mathematics/college/1q6cebegtgha4ctlij3deo1h0foedhbfzo.png)
Therefore:
![\begin{gathered} ^(12)C_5=(12!)/((12-5)!5!) \\ =(12*11*10*9*8*7!)/(7!*5!) \\ =(12*11*10*9*8)/(5!) \\ =(12*11*10*9*8)/(5*4*3*2*1) \\ =(95040)/(120) \\ =792 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/63gssqvrqzvbyrefksg77rnzzruyc84yze.png)
The students can be chosen in 792 ways.