Given that the angles of the triangle are 30, 60, and 90.
Using the sine law
![(a)/(\sin A)=(b)/(\sin B)=(c)/(\sin C)](https://img.qammunity.org/2023/formulas/mathematics/college/ulgkpk1301y5kolk344hriqzqe10ewrdh2.png)
Substitute A=30, B=60, and C=90, we get
![(a)/(\sin 30^o)=(b)/(\sin 60^o)=(c)/(\sin 90^o)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9g3hbl4gv0ch803brrvj278rkq858q7vi4.png)
![\text{Substitute }\sin 30^o=(1)/(2),\sin 60^o=\frac{\sqrt[]{3}}{2},\text{ and }\sin 90^o=1,\text{ we get}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mhel6t1y52iydcaf63zau834rptc959km9.png)
![(a)/((1)/(2))=\frac{b}{\frac{\sqrt[]{3}}{2}}=(c)/(1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1jjyqj7moc4a93onoml6e7pwshzcfn8ik6.png)
![2a=\frac{2b}{\sqrt[]{3}}=c](https://img.qammunity.org/2023/formulas/mathematics/high-school/mphh2ykmi1j7b804bzruzai6vqg3bzl1dh.png)
We know that the longest side should be the opposite side of the big angle (90).
Let c be the longest side of the given triangle.
Substitute c=1, we get
![2a=\frac{2b}{\sqrt[]{3}}=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/pnj2o6tii9ll60gl9hst4lej3gn3q069qe.png)
![2a=1\text{ and }\frac{2b}{\sqrt[]{3}}=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/s06h9vukweshxktxmr8836ehq4suxkoi79.png)
![a=(1)/(2)\text{ and }b=\frac{\sqrt[]{3}}{2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rf29mkc3tr6yef9p8ldz2ps6re6mm9a2yx.png)
![a=0.5\text{ and b=}0.866](https://img.qammunity.org/2023/formulas/mathematics/high-school/htcjtwzt5grqml5nujvmu7o8r3ka2zr7vx.png)
The smallest side is 0.5 feet
Conver the feet into inches.
![1\text{ foo}t\text{ =12 inches }](https://img.qammunity.org/2023/formulas/mathematics/high-school/vpxz92acj12njd1f9rnytaa9dulpwlhxja.png)
Dividing both sides by 2, we get
![(1)/(2)\text{ foo}t\text{ =}(12)/(2)\text{ inches }](https://img.qammunity.org/2023/formulas/mathematics/high-school/40mlofbv3hqzfbtis4iep1qhb0ppoawhkh.png)
![0.5\text{foo}t\text{ =}6\text{ inches }](https://img.qammunity.org/2023/formulas/mathematics/high-school/a0s6ighynypxrakzayitcazw6cqi3c8amm.png)
Hence the smallest side is 6 inches.