Answer:
The three numbers from the largest to the smallest are:
43, 20 and -7
Step-by-step explanation:
Let the three numbers be: x, y and z.
Since their sum is 56, we have:
![x+y+z=56](https://img.qammunity.org/2023/formulas/mathematics/college/rmjo9lxjo48ei3w9zwe6ygw0oc5x94tn2w.png)
Suppose z is the largest, and x, the smallest. As their difference is 50, we have:
![z-x=50](https://img.qammunity.org/2023/formulas/mathematics/college/4zr0zjb5hvmntnsczrgrlxf7l5i30qaw8l.png)
Lastly, given that the sum of the two smaller numbers is 13, we have:
![x+y=13](https://img.qammunity.org/2023/formulas/mathematics/college/3sj9va91xb8fojkzcwyh29rka1o6t9j28j.png)
We want to find the values of x, y and z.
Using the last equation in the first equation, we can replace (x+y) by 13 to have:
![13+z=56](https://img.qammunity.org/2023/formulas/mathematics/college/9b0eira8877sq3i43byx1y8gp7nuo22tp2.png)
Subtracting 13 from both sides, we have:
![\begin{gathered} z=56-13 \\ z=43 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zm2tn3xafrkryctsaj8td87u11qz25n6nx.png)
Now, using z = 43 in the second equation, we have:
![43-x=50](https://img.qammunity.org/2023/formulas/mathematics/college/4g86fa2f1tsa2iggbvii6qx0ngvwdx1c7o.png)
Subtracting 43 from both sides
![\begin{gathered} -x=50-43 \\ -x=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ebas8h8pm5eowjzghe94xxjxfdd1j2nm1c.png)
Divide both sides by -1
![\begin{gathered} x=(7)/(-1) \\ \\ x=-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q58fqg4ktulvwxiwwxl42hf0jddg1d7zxk.png)
Finally, using x = -7 in the third equation, we have:
![-7+y=13](https://img.qammunity.org/2023/formulas/mathematics/college/iesomtiu0ptq9zc5phbtlpv998p9hwn6q0.png)
Add 7 to both sides
![\begin{gathered} y=13+7 \\ y=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zkkhwv9hgdmjif9k35e0s8j59hvqhpljkw.png)
Therefore, the three numbers from the largest to the smallest are:
43, 20 and -7