Answer:
• y-intercept = (0, 0)
,
• Vertex = (1/2, 5/4)
,
• Axis of symmetry = 1/2
Step-by-step explanation:
Given the function:
![f(x)=-5x^2+5x](https://img.qammunity.org/2023/formulas/mathematics/college/xdlntfuo3eev1l8so4fgs1ulvrdbrtpqlh.png)
The vertex is:
![\begin{gathered} v_x=-(b)/(2a) \\ \\ \text{Where a = -5, b = 5} \\ \\ v_x=-(5)/(2(-5))=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/184i2dcoyvoubkiqfuyps1cjlww3zh2cav.png)
Substitute 1/2 into the given function to find the y-coordinate of the vertex
![\begin{gathered} v_y=-5((1)/(2))^2+5((1)/(2)) \\ \\ =(5)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jxrtfhq7ceocj8tvftjz4il9pzaxib7xld.png)
Therefore, the vertex is (1/2, 5/4)
Axis of symmetry:
This is -b/2a
![(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/geika1bebdh49vlmy8m866aot9b5u0n47d.png)
The y-intercept is (0, 0)