Given that the investment money is $700. The nominal annual interest rate is 4.5% and the time period is 11 years.
We have to find the amount at given time period.
a)
The formula when the interest is compounded annually is:
![A=P(1+r)^t](https://img.qammunity.org/2023/formulas/mathematics/college/oore8x40g44yuigz8li3pepnuow1o5picv.png)
Substitute the given values in the formula:
![\begin{gathered} A=700(1+0.045)^(11) \\ =700(1.623) \\ =1136.1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/enepsq0lizql88099850rnp04v6hlk2r98.png)
Thus, the answer is $1136.1.
b)
The formula of amount when the interest is compounded weekly is:
![A=P(1+(7r)/(365))^{(365)/(7)t}](https://img.qammunity.org/2023/formulas/mathematics/college/57f7wnltjjte4ykg5kxlp4ehd4t0auz3zq.png)
Substitute the given values in the formula:
![\begin{gathered} A=700(1+(7*0.045)/(365))^{(365*11)/(7)} \\ =700(1+0.000863)^(573.57) \\ =700(1.000863)^(573.57) \\ =700(1.6401) \\ =1148.07 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cg3bbd0jm67cehsr23z0w2zystov8vre5f.png)
Thus, the answer is $1148.07.
c)
The formula of amount when the interest is compounded daily is:
![A=P(1+(r)/(365))^(365t)](https://img.qammunity.org/2023/formulas/mathematics/college/fq20ctww9zr64jyk02770pw5n6ua32in7q.png)
Substitute the given values in the formula:
![\begin{gathered} A=700(1+(0.045)/(365))^(365*11) \\ =700(1+0.0001232)^(4015) \\ =700(1.0001232)^(4015) \\ =700(1.6398) \\ =1147.86 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yjjwmd2f2drfs8o9nwv975q40x0eddzmbr.png)
Thus, the answer is $1147.86.
d)
The formula when the interest is compounded continuously is:
![A=Pe^(rt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/5drqeoscjn6fncl992j2z04p3erm9eojdf.png)
substitute the given values in the formula:
![\begin{gathered} A=700e^((0.045*11)) \\ =700e^(0.495) \\ =700(1.6404) \\ =1148.28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h5wmxpzs48b1cpt3licxpzn5rx6g3dyzqr.png)
Thus, the answer is $1148.28.