The variance is given by:
![\sigma^2=\sum ^{}_{}x^2p(x)-\mu^2](https://img.qammunity.org/2023/formulas/mathematics/college/eqhotuj301k963b90j7m01z6iy0ape9i7x.png)
In this case the mean is equal to 4.9 so lets calculate the sum first:
![\begin{gathered} \sum ^{}_{}x^2p(x)=3^2(0.3)^{}+4^2(0.1)^{}+5^2(0.2)^{}+6^2(0.2)^{}+7^2(0.2)^{} \\ =26.3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4kwbkexpdfot2jovze11yh9r8vsewl0lvu.png)
Now that we have the sum we plug it in the expression for the variance and the value of the mean:
![\begin{gathered} \sigma^2=26.3-4.9^2 \\ \sigma^2=2.29 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ndisvkfntbe5wq0d5pa7jl10yv5clnupeo.png)
Therefore the variance is 2.3 (rounded to one decimal place)
The standard deviation is given by:
![\sigma=\sqrt[]{\sigma^2}](https://img.qammunity.org/2023/formulas/mathematics/college/1nil4daxtwmiiojjzy9q3k9t0m5jcp66vg.png)
Then in this case we have:
![\begin{gathered} \sigma=\sqrt[]{2.29} \\ \sigma=1.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mrevxr79f4fptaymmampsx9ym3ynjssshx.png)
Therefore the standard deviation is 1.5