ANSWER
Option C
![(2x+3)/(x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/2qklseq5cuhaf3q5k8g7597vzi7p0m99c8.png)
Step-by-step explanation
To find the division between two functions, first, we have to write the expression,
![f(x)/ g(x)=(2x^2-x-6)/(x^2-4)](https://img.qammunity.org/2023/formulas/mathematics/college/w8bh565oid2vs3wgs7aflzekcjsrfxd3f9.png)
Then, to simplify, we have to factor each function by finding its zeros.
Function g(x) is a difference between two squares, so it can be factored as,
![g(x)=(x+2)(x-2)](https://img.qammunity.org/2023/formulas/mathematics/college/mf98aberocl2uobfoxxt0zw9aos2g0v7tb.png)
To find the zeros of function f(x) we can use the quadratic formula,
![\begin{gathered} ax^2+bx+c=0 \\ \\ x=(-b\pm√(b^2-4ac))/(2a) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yns9mje4ec6d873f1mz76sc04vk39kgqv5.png)
In this case, a = 2, b = -1, and c = -6,
![x=(-(-1)\pm√((-1)^2-4\cdot2\cdot(-6)))/(2\cdot2)=(1\pm√(1+48))/(4)=(1\pm√(49))/(4)=(1\pm7)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/s9denizfi2bkhkh4s25qvfv95paf09zief.png)
So, the zeros of f(x) are,
![\begin{gathered} x=(1+7)/(4)=(8)/(4)=2 \\ \\ x=(1-7)/(4)=(-6)/(4)=-(3)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qshfkq8q0gjg92vm54ebhbc2ank04du0jt.png)
So, the factored form of f(x) is,
![f(x)=2(x-2)\left(x+(3)/(2)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/bjyqfh9iz73tbe0etzwrytagva5u2fcsk4.png)
Replace each function by its factored form in the quotient,
![f(x)/ g(x)=(2(x-2)(x+(3)/(2)))/((x+2)(x-2))](https://img.qammunity.org/2023/formulas/mathematics/college/hg7lp722bik374hmvoa5h04ajvk9av1puj.png)
The factor (x - 2) is common in both numerator and denominator, so it cancels out,
![f(x)/ g(x)=(2(x+(3)/(2)))/(x+2)=(2x+3)/(x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/nd5dt46ety1m8ohsw17v5wpiof67y6zb98.png)
Hence, the quotient is,
![f(x)/ g(x)=(2x+3)/(x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/30f7lwytm89t5himqhqls1da9n6i8pie9i.png)