b = 3c
Step-by-step explanation:
let c = cans of paint = x
let b = birdhouses painted = y
To get equation for the values in the table, we would use equation of line:
y = mx + b
y in this case = b
x in this case = c
m = slope
We need to change the letter b for another to avoid confucion:
b = y-intercept
let y-intercept = t
The equation becomes:
b = mc + t
![\begin{gathered} \text{Slope formula:} \\ m\text{ = }(y_2-y_1)/(x_2-x_1) \\ m\text{ = }(b_2-b_1)/(c_2-c_1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ib80z9un5ovjw1achdomwrl2epc7q1qwmw.png)
![\begin{gathered} u\sin g\text{ any two points:} \\ (5,\text{ 15) and (10, 30)} \\ x_1=5,y_1=15,x_2=10,y_2\text{ = }30 \\ m\text{ = }(30-15)/(10-5) \\ m\text{ = }(15)/(5)\text{ = 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6fumpki0gx9ftupub9hapq3a97vdsqb37a.png)
To get the y-intercept, we use slope and any of the two points:
![\begin{gathered} point\colon\text{ (5, 15) = (c, b)} \\ b\text{ = mc + t} \\ 15\text{ = 3(5) + t} \\ 15\text{ - 15 = t} \\ t\text{ = 0} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dpdf4y2nz0dmrzxwvyb0nevpqhadyb5g5x.png)
![\begin{gathered} \text{The equation becomes:} \\ b\text{ = 3c + 0} \\ b\text{ = 3c} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6m1czdx5lqgs8qx2aviw3o7n8kcqv1ty1o.png)