80.9k views
3 votes
I need help in math can you please help me please

I need help in math can you please help me please-example-1
User Kilo
by
4.2k points

1 Answer

7 votes

The given equation is:


9\tan ^3x\text{ = 3 tanx}

Let y = tan x, the equation becomes:


\begin{gathered} 9y^3=3y \\ 9y^3-3y=0 \\ 3y(3y^2-1)=0 \\ \text{When 3y = 0} \\ y\text{ = }(0)/(3) \\ y\text{ = 0} \\ \text{When 3y}^2-1\text{ = 0} \\ 3y^2=1 \\ y^2=(1)/(3) \\ y\text{ = }\pm\frac{1}{\sqrt[]{3}} \end{gathered}

Since y = tan x:


\begin{gathered} \tan \text{ x = 0} \\ x=tan^(-1)(0) \\ x\text{ = }k\pi\text{ where k = }\ldots..,\text{ -2, -1, 0, 1, 2}\ldots\ldots \\ x\text{ = }\ldots.-2\pi,\text{ -}\pi,\text{ 0, }\pi,\text{ 2}\pi\ldots. \\ In\text{ the interval \lbrack{}0, 2}\pi)\colon \\ x\text{ = 0, }\pi \end{gathered}

Therefore, when tan x = 0, we got two solutions in the interval (0, 2π]. That is, x = 0, π

Also:


\begin{gathered} \tan \text{ x = }\pm\frac{1}{\sqrt[]{3}} \\ x=tan^(-1)(\pm\frac{1}{\sqrt[]{3}}) \\ In\text{ the interval \lbrack{}0, 2}\pi\rbrack,\text{ x = }(\pi)/(6),\text{ }(5\pi)/(6),(7\pi)/(6),(11\pi)/(6) \end{gathered}

Therefore, the solutions to the equation in the interval (0, 2π] are:

User Nikhil Aneja
by
4.5k points