One important thing here is to realize that the angle is in degrees, and not radians, it changes completely the formula.
For the area of a sector we have:
![A=(\theta)/(360\degree)\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/tkvtky56b6zpywalzxqvahtn0iuj2pm43i.png)
Where "θ" is the angle in degrees
And for the perimeter, we have the length of the arc, plus 2 times the radius, the length of the arch using degrees is
![l=2\pi r\cdot(\theta)/(360)](https://img.qammunity.org/2023/formulas/mathematics/college/ru3zw3rq4ihjonamx77r9r8k4ovi3dtzj8.png)
But we must add the radius 2 times, therefore the perimeter is
![\begin{gathered} p=2r+2\pi r\cdot(\theta)/(360) \\ \\ p=2r\mleft(1+(\pi\cdot\theta)/(360)\mright) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o8t6b0xoi03cvz5srtsqqpj55exjmkcgix.png)
Therefore, the formulas are:
Area of a sector:
![A=(\theta)/(360\degree)\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/tkvtky56b6zpywalzxqvahtn0iuj2pm43i.png)
Perimeter of a sector
![p=2r+2\pi r\cdot(\theta)/(360)](https://img.qammunity.org/2023/formulas/mathematics/college/msibhu5gqt9r27eqgz3uyjkc9gdcjlf2yh.png)
Attention! all formulas in degrees, so θ must be in degrees