167k views
1 vote
In the right triangle shown, mZJ = 60° and JL = 6V3. J K 60° 6V3 How long is? Choose 1 answer:32√33√369

In the right triangle shown, mZJ = 60° and JL = 6V3. J K 60° 6V3 How long is? Choose-example-1
User HMCFletch
by
4.8k points

1 Answer

1 vote


x=JK=3\sqrt[]{3}

Step-by-step explanation

Let

angle=60

hypotenuse= 6 square root(3)

adjancent side=x=JK

now ,use cosinde function


\cos \emptyset=\frac{adjacent\text{ side}}{hypotenuse}

replace


\begin{gathered} \cos \text{ 60=}\frac{x}{6\sqrt[]{3}} \\ \text{Multiply both sides by 6}\sqrt[]{3} \\ 6\sqrt[]{3}\cos \text{ 60=}\frac{x}{6\sqrt[]{3}}\cdot6\sqrt[]{3} \\ 6\sqrt[]{3}\text{ }\cdot\text{0.5=x} \\ x=3\sqrt[]{3} \end{gathered}

I hope this helps you.

In the right triangle shown, mZJ = 60° and JL = 6V3. J K 60° 6V3 How long is? Choose-example-1
User Dlumpp
by
4.8k points