The half life formula is :
![N(t)=N_o((1)/(2))^{(t)/(T)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rge1d60l7rb3gk7xjbu7pm61ius1l21jel.png)
where N(t) = remaining quantity after t years
No = Original Quantity
t = time in years
T = half life in years
From the problem, we have :
N(t) = 30 grams
No = 100 grams
T = 674
Solve for t :
![\begin{gathered} 30=100((1)/(2))^{(t)/(674)} \\ (30)/(100)=((1)/(2))^{(t)/(674)} \\ (3)/(10)=((1)/(2))^{(t)/(674)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/f45l63mtq6cxefmwfjepv3ni3f6w1zucgu.png)
Take ln of both sides :
![\begin{gathered} \ln ((3)/(10))=\ln ((1)/(2))^{(t)/(674)} \\ \ln ((3)/(10))=(t)/(674)\ln ((1)/(2)) \\ t=(674\ln ((3)/(10)))/(\ln ((1)/(2))) \\ t=1170.71 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/grkszvvbwopbqqfp2u68m3jedjd3anfttl.png)
The answer is t = 1170.71 years