16.5k views
5 votes
Find (f • g) (0) when f(x) = 4x + 7 and g(x) = 1/x.

Find (f • g) (0) when f(x) = 4x + 7 and g(x) = 1/x.-example-1
User Coletta
by
3.6k points

1 Answer

2 votes

SOLUTION:

Step 1:

In this question, we are given the following:

Step 2:

The details of the solution are as follows:


\begin{gathered} Given\text{ that:} \\ (f\text{ o g \rparen \lparen x \rparen = f\lparen g\lparen x\rparen\rparen} \\ But\text{ g\lparen x\rparen = }(1)/(x) \\ Then,\text{ we have that:} \\ f((1)/(x)) \\ But\text{ f\lparen x\rparen = 4 x + 7} \\ Then\text{ f\lparen}(1)/(x))\text{ = 4\lparen}(1)/(x))\text{ + 7}_ \\ This\text{ means that: } \end{gathered}
\begin{gathered} (f\text{ o g\rparen \lparen x\rparen = f\lparen g\lparen x\rparen \rparen = f\lparen}(1)/(x))\text{ =4\lparen}(1)/(x)\text{ \rparen + 7} \\ Then,\text{ we have that:} \\ (f\text{ o g \rparen \lparen 0 \rparen = 4 \lparen}(1)/(0))\text{ + 7 = undefined \lparen OPTION A \rparen} \\ \end{gathered}

CONCLUSION:

The final answer is:


undefined\text{ \lparen OPTION A \rparen}

Find (f • g) (0) when f(x) = 4x + 7 and g(x) = 1/x.-example-1
User Russell Sim
by
4.0k points