Given:
CK = 3x + 23
KT = 5x + 7
If K is the midpoint of CT, then CK = KT. Then,
![3x+23=5x+7](https://img.qammunity.org/2023/formulas/mathematics/college/o9yswy00ob36iyv9bdeuez01xcdb6cl6gl.png)
Finding x:
Subtracting 3x from both sides:
![\begin{gathered} 3x+23-3x=5x+7-3x \\ 23=2x+7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7r0dlrelvehoy30rdq33zgyg71twg71v5g.png)
Subtracting 7 from both sides:
![\begin{gathered} 23-7=2x+7-7 \\ 16=2x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v0vdj4f1i03366ckehzcg9rv50yamug15e.png)
And dividing both sides by 2:
![\begin{gathered} (16)/(2)=(2x)/(2) \\ 8=x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3ei7a8ok7ovb3lmxo37rh5uwar0tjcoxkt.png)
x = 8.
Finding CT:
K is the midpoint of CT, then CT = CK + KT
![\begin{gathered} CT=3x+23+5x+7 \\ CT=3*8+23+5*8+7 \\ CT=24+23+40+7 \\ CT=94 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v85n364e2kwzhdrl46ras2eynkacs6x7hj.png)
CT = 94.
Answer:
x = 8
CT = 94