Let m be a glass of milk and s be a snack bar.
3 glasses of milk and 4 snack bars have a total of 80 carbohydrates. So, the expression is,
![3m+4s=80\ldots..(1)](https://img.qammunity.org/2023/formulas/mathematics/college/jpxqt5js7zimwdnmc8icj1s0yamakcgim2.png)
4 glasses of milk and 3 snack bars have a total of 81 carbs.
![4m+3s=81\ldots\ldots.(2)](https://img.qammunity.org/2023/formulas/mathematics/college/ucg1vvk5zauz1mdf9zcpqi4so76owf2w0d.png)
The above equation can be rewritten as,
![\begin{gathered} 4m=81-3s \\ m=(81-3s)/(4)\ldots..(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ukos3naba6qphufhd1r5exf670onveciwr.png)
Put equ (3) in (1) to find s.
![\begin{gathered} 3*((81-3s)/(4))+4s=80 \\ (243-9s)/(4)+4s=80 \\ (243-9s+16s)/(4)=80 \\ 243-9s+16s=320 \\ 7s=77 \\ s=11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a4007dzlr6mzcw7q8h4jg1w0dxf2vmenhg.png)
Now, put 11 for s in equ (1) to find m.
![\begin{gathered} 3m+4*11=80 \\ 3m+44=80 \\ 3m=36 \\ m=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hgks7jtr1rvfcqqv6ai84jhk0nau8eedtk.png)
So, there are