Solution
Step 1
Use the secant and tangent theorem to a circle.
Step 2
AC = 30 + x
BC = x
CD = 20
Step 3
Substitute into the theorem
![\begin{gathered} (30+x)* x\text{ = 20}^2 \\ \\ x^2+30x\text{ = 400} \\ \\ x^2+30x-400=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gc1b0lnpuqrrs5i8hcc16o8yarp4bntz6a.png)
Step 4
Use the factorization method to solve for x.
![\begin{gathered} x^2+30x-400=0 \\ \\ x^2-10x+40x-400=0 \\ \\ x(x-10)+40(x-10)=0 \\ \\ (x+40)(x-10)=0 \\ \\ x-10=0,\text{ x+40=0} \\ \\ x\text{ = 10, x = -40} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dx4liu85p04r9ouvr0exyopr5i9rzc9ahu.png)
Step 5
The value of x cannot be negative, hence x = 10
Final answer
x = 10