Answer:
![2y-3x=-8](https://img.qammunity.org/2023/formulas/mathematics/college/tv6wez73yt1k36p1wa7ikch66b1lttexh5.png)
Step-by-step explanation:
Given the graph in the attached image;
The intercept of the line on the y-axis is at;
![\begin{gathered} y=-4 \\ At\text{ point;} \\ (0,-4) \\ \text{ intercept b is;} \\ b=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c8ir76q5oo9agljgvw6ncepatqs02vo7pu.png)
At the x=2, the value of y is;
![\begin{gathered} y=-1 \\ at\text{ point;} \\ (2,-1) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c131fnm01ijbir691f1grnmvkvderbiefv.png)
The slope of the line can be calculated using the two points on the graph;
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ m=(-1-(-4))/(2-0)=(-1+4)/(2) \\ m=(3)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9yab7mk1n5fkwebswuj80enjvc3msh2yp5.png)
The slope intercept equation of a straight line is of the form;
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
substituting the slope m and intercept b we have;
![y=(3)/(2)x-4](https://img.qammunity.org/2023/formulas/mathematics/college/bqng9ob7jcacuutcq2szs5hj8qbs6dw7a0.png)
As this is not among the given options, let us solve further;
multiply through by 2 and move the x term to the left side;
![\begin{gathered} y(2)=(3)/(2)x(2)-4(2) \\ 2y=3x-8 \\ 2y-3x=-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ivia0ldiranw6tu1wnlo24kxzdx0nqoxuc.png)
Therefore, from the given options the correct equation for the line is C;
![2y-3x=-8](https://img.qammunity.org/2023/formulas/mathematics/college/tv6wez73yt1k36p1wa7ikch66b1lttexh5.png)