Step-by-step explanation:
Data provided:
T2 = 40.0 °C
(absolute temperature = T2 = 40.0 °C + 273 = 313 K)
------
T1 (absolute) = 20.0 °C + 273 = 293 K
------
The rate constant for a reaction at 40.0 °C is exactly 4 times that at 20.0 °C, mathematically:
k2/k1 = 4
------------------------
Here is used the Arrhenius expression as follows:
![ln\text{ }(k2)/(k1)=\text{ }(Ea)/(R)x\lbrack(1)/(T1)-(1)/(T2)\rbrack](https://img.qammunity.org/2023/formulas/chemistry/college/gfh81ms2cjvj3h69u55k3ubv6rrycm9xku.png)
R = universal gas constant = 8.314 J/mol K
Ea = activation energy
------------------------
Procedure:
![\begin{gathered} ln\text{ 4 = }\frac{Ea}{8.314\text{ J/mol K}}x\lbrack\frac{1}{293\text{ K}}-\frac{1}{313\text{ K}}\rbrack \\ 1.386\text{ = }(Ea)/(8.314)x(2.18x10^(-4)) \\ Ea\text{ = 52858.73 J/mol} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/2pii8z6byopa803cccgbcojr0w2dfeac5l.png)
Answer: Ea = 52858.73 J/mol