165k views
4 votes
Evaluate fraction numerator P presubscript 4 subscript 2 times P presubscript 6 subscript 1 over denominator P presubscript 18 subscript 3 end fraction.A.1 over 68 B.begin display style 4 over 5 end style C.begin display style 3 over 68 end style D.begin display style 2 over 3 end style

Evaluate fraction numerator P presubscript 4 subscript 2 times P presubscript 6 subscript-example-1

1 Answer

6 votes

Given:


(4P_2\cdot6P_1)/(18P_3)

Required:

We need to evaluate the given expression.

Step-by-step explanation:

Consider the formula.


nP_r=(n!)/((n-r)!)

Use this formula to evaluate the given expression.


(4P_2\cdot6P_1)/(18P_3)=((4!)/((4-2)!)\cdot(6!)/((6-1)!))/((18!)/((18-3)!))


Use\text{ }((a)/(b))/((c)/(d))=(a)/(b)\cdot(d)/(c).


(4P_2\cdot6P_1)/(18P_3)=(4!)/((4-2)!)\cdot(6!)/((6-1)!)\cdot((18-3)!)/(18!)


(4P_2\cdot6P_1)/(18P_3)=(4!)/(2!)\cdot(6!)/(5!)\cdot(15!)/(18!)


(4P_2\cdot6P_1)/(18P_3)=(4*3*2!)/(2!)\cdot(6*5!)/(5!)\cdot(15!)/(18*17*16*15!)

Cancel out the common factorials.


(4P_2\cdot6P_1)/(18P_3)=(4*3)/(1)\cdot(6)/(1)\cdot(1)/(18*17*16)


(4P_2\cdot6P_1)/(18P_3)=(4*3*6)/(18*17*16)


(4P_2\cdot6P_1)/(18P_3)=(1*18)/(18*17*4)


(4P_2\cdot6P_1)/(18P_3)=(1)/(17*4)


(4P_2\cdot6P_1)/(18P_3)=(1)/(68)

Final answer:


(4P_2\cdot6P_1)/(18P_3)=(1)/(68)

User Michael Barany
by
4.8k points