We have the next given function:
![y=x^2+2x+3](https://img.qammunity.org/2023/formulas/mathematics/college/bb5c549yevkt6qa9wvytzfk6630h656t3m.png)
The equation corresponds to a parabola.
First, we need to derivate it:
![\begin{gathered} (d)/(dx)y=(d)/(dx)(x^2+2x+3) \\ Then \\ (d)/(dx)y=(d)/(dx)x^2+(d)/(dx)2x+(d)/(dx)3 \\ (d)/(dx)y=2x+2+0 \\ (d)/(dx)y=2x+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qzfpnrtiht18bv9i9xupg8j67h48kdz7xl.png)
Now, we need to find when x=0.
![\begin{gathered} 2x+2=0 \\ Solve\text{ for x} \\ 2x=-2 \\ x=-(2)/(2) \\ x=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j454kbax8mn6wdivs3mh5g6ritpznudsn2.png)
So, we can check the numbers using the number line:
Now, we need to check a number smaller than -1 and another number greater than -1.
Let us check 3.
Then:
![\begin{gathered} 2x+2 \\ 2(3)+2 \\ 6+2 \\ 8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v2esythnpwoyvszdi4hz8cvbw0fcytex24.png)
POSITIVE, when the x value is greater than -1, the function is positive (it is increasing).
Let us check -2:
![\begin{gathered} 2x+2 \\ 2(-2)+2 \\ -4+2 \\ -2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/as5clx0z3ohk6yhiix2hp9wqh8pn3nm0ih.png)
NEGATIVE, when the x value is smaller than -1, the function is decreasing.
Finally, we can write each interval.
The function is decreasing on interval (-∞,-1)
The function is increasing on interval (-1,∞)