we have
M(-1,-6),N(3,-2),O(1,0) and P (-3,-4)
Part 1
slope MN
M(-1,-6),N(3,-2)
m=(-2+6)/(3+1)
m=4/4
m=1
Part 2
Length MN
Applying the formula to calculate the distance between two points
![\begin{gathered} d=\sqrt[]{\mleft(-2+6\mright)^2+}\mleft(3+1\mright)^2 \\ MN=\sqrt[]{32} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x1xb6zdese9pn20k5m0co2baseq9n5h7lo.png)
Part 3
slope NO
N(3,-2),O(1,0)
m=(0+2)/(1-3)
m=2/-2
m=-1
Part 4
Length NO
![\begin{gathered} NO=\sqrt[]{\mleft(0+2\mright)^2+}\mleft(1-3\mright)^2 \\ NO=\sqrt[]{8} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7zx2tmqous6llrf6nsb5wr2om3m3cz92p7.png)
Part 5
slope OP
O(1,0) and P (-3,-4)
m=(-4-0)/(-3-1)
m=-4/-4
m=1
Part 6
Length OP
![\begin{gathered} OP=\sqrt[]{\mleft(-4-0\mright)^2+\mleft(-3-1\mright)^2} \\ OP=\sqrt[]{32} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/alahuhm03a59icapju6o8ijgczi6mzxp40.png)
Part 7
slope PM
P (-3,-4) and M(-1,-6)
m=(-6+4)/(-1+3)
m=-2/2
m=-1
Part 8
Length PM
![\begin{gathered} PM=\sqrt[]{\mleft(-6+4\mright)^2+}\mleft(-1+3\mright)^2 \\ PM=\sqrt[]{8} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nl9l300zzz8o0ko8ub0vc2wvq26yw0nw49.png)
part 9
Compare the slopes
we have that
MN=OP
NO=PM
that means
sides MN and OP are parallel
sides NO and PM are parallel
so
opposite sides are parallel
consecutive sides are perpendicular (because the slopes are negative reciprocal)
part 10
compare the lengths
MN=OP
NO=PM
that means
opposite sides are congruent
therefore
Quadrilateral MNOP is a rectangle