Given:
The principal value is P = 305,000.
The annual interest rate is r = 7.8%.
The time period is t = 5 years.
Step-by-step explanation:
The formula of equally monthly installment is,
![\text{EMI}=(r(1+r)^n)/((1+r)^n-1)\cdot P](https://img.qammunity.org/2023/formulas/mathematics/college/v7j1wkcadj1892lmlfjkfdnlev54uf3ppm.png)
Here, n is number of months, P is principal value and t is monthly rate of interest.
Determine the number of months in 25 years.
![25\cdot12=300\text{ months}](https://img.qammunity.org/2023/formulas/mathematics/college/m1g7k9hlvgq1vsentbdztz1mtgiq5riyyd.png)
The monthly interset rate is,
![(0.078)/(12)=0.0065](https://img.qammunity.org/2023/formulas/mathematics/college/fhsry2cyye165qmsabil19gghstsr52if9.png)
Substitute the values in the formula to determine the equation for equally monthly installments.
![\begin{gathered} \text{EMI}=(0.0065(1+0.0065)^(300))/((1+0.0065)^(300)-1)\cdot305000 \\ =(305000\cdot0.0065(1+0.0065)^(300))/((1+0.0065)^(300)-1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i404ujhvsj5f4kkbr9ibrsv36wa67p61o1.png)
Option D is correct.