Given data:
Coke
Population SD (σ₁) = 0.073
Sample size (n₁) = 48
Sample Mean (x₁) = 12.01 ounces
Pepsi
Population SD (σ₂) = 0.068
Sample Size (n₂) = 46 cans
Sample Mean (x₂) = 12 ounces
Find: test statistic value and p-value
Solution:
Since the sample size is large for both populations (sample size > 30), we shall use the z-statistic for two samples. The formula is:
![z=\frac{\bar{x}_1-\bar{x}_2}{\sqrt[]{(\sigma^2_1)/(n_1)+(\sigma^2_2)/(n_2)}}](https://img.qammunity.org/2023/formulas/mathematics/college/d3xph1qsbg6trjgmk9s373fhmbnzd6mghd.png)
Having those given data, let's plug it in to the formula we have.
![z=\frac{12.01-12}{\sqrt[]{(0.073^2)/(48)+(0.068^2)/(46)}}](https://img.qammunity.org/2023/formulas/mathematics/college/e5p2eyi5g5vsthh2aopxk0gef0sffnvfzt.png)

Hence, the test statistic z = 0.688.
The p-value equivalent of this test statistic is 0.4917.