The Solution:
The correct answer is -0.4364
Given that:
![\sin \theta=-(2)/(5)\text{ , and }\cos \theta>0](https://img.qammunity.org/2023/formulas/mathematics/college/gwls981xu24g5fkl5hgm6m2wamghyrsnb8.png)
We are required to find the value of:
![\tan \theta](https://img.qammunity.org/2023/formulas/mathematics/high-school/hcwy21ifycoyao0gkv41dpuwccnpm4x8za.png)
Step 1:
We shall find the angle represented with theta.
![\begin{gathered} \sin \theta=-(2)/(5) \\ \text{ Taking the }\sin ^(-1)\text{ of both sides, we get} \\ \\ \theta=\sin ^(-1)(-(2)/(5))=-23.5782^o \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fd1cpsx1f6cf0ovq7qjot5rwakv7iq2ewk.png)
Recall:
The sine of angles is only negative in the 3rd and 4th quadrants.
And the formula for the 3rd quadrant is:
![\theta-180^o,180^o<\theta\leq270^o](https://img.qammunity.org/2023/formulas/mathematics/college/xrkj3hc0ftmegjh14ptieo699rpxonysfu.png)
While the formula for the 4th quadrant is:
![360^o-\theta,270^o<\theta\leq360^o](https://img.qammunity.org/2023/formulas/mathematics/college/z7jgeehe21bii3t0964a0n4o62rmzf60jo.png)
So,
![-\sin (\theta-180)=-\sin 23.5782^o](https://img.qammunity.org/2023/formulas/mathematics/college/cifqab4rrlrryr2fswa9himg0l5bbo6fvw.png)
This implies that:
![\theta-180=23.5782\text{ (having divided both sides by -}\sin )](https://img.qammunity.org/2023/formulas/mathematics/college/bho4bqytdhahr1q02gi9vf1w5vslbwufat.png)
Collecting the like terms, we get
![\begin{gathered} \theta=23.5782+180=203.5782^o \\ \text{ }\theta\\e203.5782^o\text{ (since }\cos 203.5782^o\text{ is less than zero)} \\ \cos 203.5782=-0.9165<0 \\ \text{Therefore,} \\ \theta\\e203.5782^o \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kn8pteb57p9wluhrd9num6jzzewz9mozxb.png)
We shall use the 4th quadrant formula.
![-\sin (360^o-\theta)=-\sin 23.5782^o](https://img.qammunity.org/2023/formulas/mathematics/college/7a7p75khw9apvmd0mhjxk4uf9qfl48trou.png)
Dividing both sides by -sin, we get
![\begin{gathered} 360^o-\theta=23.5782 \\ \text{Collecting the like terms, we get} \\ 360-23.5782=\theta \\ \text{ So,} \\ \theta=336.4218^o \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n90dztij4kmjugdr4455zt5k570qd51gpk.png)
To check that it satisfies the given condition that says cos(theta) is greater zero, we have:
![\cos 336.4218^o=0.9165>0\text{ (Condition satisfied)}](https://img.qammunity.org/2023/formulas/mathematics/college/kbilekkqe39ciyclsjhou2aq8vvui1khuy.png)
So, we have that:
![\theta=336.4218^o](https://img.qammunity.org/2023/formulas/mathematics/college/tkaao9yo2wk40hxa4y35ad4vkue7exiq9e.png)
Step 2:
We shall find the value of tan(theta):
![\tan \theta=\tan (336.4218^o)=-0.4364](https://img.qammunity.org/2023/formulas/mathematics/college/bznpexvfzxm1jv5iywsra3tcvd4xnnin59.png)
Therefore, the correct answer is -0.4364