The function f is given by:
![f(x)=\begin{cases}{8-x-x^2\text{ if }x\leq1} \\ {\placeholder{⬚}} \\ 2x-1\text{ if }x\gt1\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/m50tcocsnwy7wmoqqy3nbu9pr0m3lmxnni.png)
Therefore,
![\lim_(x\to1^-)f(x)=8-(1)-(1)^2=8-1-1=6](https://img.qammunity.org/2023/formulas/mathematics/college/46jn1z8mxl68h7nxein7qkkbb3wj4ai2bi.png)
Therefore,
![\lim_(x\to1^-)f(x)=6](https://img.qammunity.org/2023/formulas/mathematics/college/p6kz6g0ldxjazks4v5o2j72ut7plaa41ll.png)
Hence, the limit of f(x) as x tends to 1 from the left is 6
![\begin{gathered} \lim_(x\to1^+)f(x)=2(1)-1=1 \\ \operatorname{\lim}_(x\to1^+)f(x)=1 \end{gathered}]()
Hence, the limit of f(x) as x tends to 1 from the right is 1
Since the left limit is not equal to the right limit, it follows that the limit of f(x) as x tends to 1 does not exist:
![\lim_(x\to1)f(x)=DNE](https://img.qammunity.org/2023/formulas/mathematics/college/6g8zigkwdnvt4dnyipqi19z4f7e28qqanc.png)