The given functions are
![\begin{gathered} f(x)=2x-3 \\ g(x)=3x-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l44atgcx7g7ek3xvkjs8xx5lox49roy65r.png)
Let's find the quotient between these functions
![(f(x))/(g(x))=(2x-3)/(3x-6)](https://img.qammunity.org/2023/formulas/mathematics/college/rfmz9j44uuchqt55p99ri0937grw6ys8go.png)
The domain of this new function is determined by the denominator 3x-6 because it can't be equal to zero.
![3x-6\\e0](https://img.qammunity.org/2023/formulas/mathematics/college/x34nn0ge5p0w02vbflblxlluozeszaxt31.png)
Let's solve for x
![\begin{gathered} 3x-6\\e0 \\ 3x\\e6 \\ x\\e(6)/(3) \\ x\\e2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/np9p3f5jya7cjqi9nxp4q36xdf0li75ive.png)
This means the domain must have a restriction.
Therefore, the domain would be
![D\colon\mleft\lbrace x|x\in\R/x\\e2\mright\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/ucufwr21anifctuw5cyu9rdjcf1p8rzs7d.png)
In words, the domain of the function is all real numbers except the number 2.