TO FIND X
Given that the triangle is a right-angled triangle, the length of the three sides can be related using the Pythagorean Theorem, given to be:
![c^2=a^2+b^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/udh1dsx7kwgfauditnn86pp2qhoycm1tvv.png)
where c is the hypotenuse, and a and b are the other two sides.
From the diagram provided, we have the following parameters:
![\begin{gathered} a=5 \\ b=x \\ c=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gwhrzmya5rp6gwfmul9po1hmdy8xrbcf65.png)
Therefore, we can calculate the value of x by substituting the values into the formula above and solving:
![\begin{gathered} 12^2=5^2+x^2^{} \\ 144=25+x^2 \\ x^2=144-25 \\ x^2=119 \\ x=\sqrt[]{119} \\ x=10.91 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kkb04qsrz9ccxk5h5y522p5m0zqsfiq15c.png)
The measure of x is 10.91.
TO FIND θ
We can use the Cosine Trigonometric Ratio to calculate the measure of θ, given to be:
![\cos \theta=\frac{\text{adj}}{\text{hyp}}](https://img.qammunity.org/2023/formulas/mathematics/college/fsbh0239upsxsfq51smzxkdg74lzqwz037.png)
From the diagram provided, we have:
![\begin{gathered} hyp=12 \\ adj=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/649gx27orckjnw8zx7drtbqqt5rctzebea.png)
Therefore, we have:
![\begin{gathered} \cos \theta=(5)/(12) \\ \theta=\cos ^(-1)((5)/(12)) \\ \theta=65.38\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6uo3bcnx7j29nnwhawi9xqlhc4cbcuekvk.png)
The measure of θ is 65.38°.