We have the solutions x = 4 and x = -7, so
A. polynomial in factored form:
Equal the expression to zero, this is:
![\begin{gathered} x-4=4-4 \\ x-4=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hts26sb8esgylv3h3k9wfea7jblq4dmdyo.png)
And
![\begin{gathered} x+7=-7+7 \\ x+7=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qh9oiupp0cnzgzp57u8ulapryk546zmmjv.png)
Therefore: factor 1 is (x - 4)
factor 2 is (x + 7)
Then we express the polynomial, This is by multiplying the factors
![(x-4)(x+7)](https://img.qammunity.org/2023/formulas/mathematics/college/yq9a3vj7zy9ephgf0jskzvq18kfpm7inug.png)
Answer: (x-4)(x+7)
B. Write the polynomial in expanded form:
To find we multiply the two factors
![(x-4)(x+7)](https://img.qammunity.org/2023/formulas/mathematics/college/yq9a3vj7zy9ephgf0jskzvq18kfpm7inug.png)
we apply the distributive property
![x\cdot x+x\cdot7-4\cdot x-4\cdot7](https://img.qammunity.org/2023/formulas/mathematics/college/64epwzh45y1ye7jeu1ph4lhdi0c7cimx2d.png)
Simplify
![x^2+7x-4x-28](https://img.qammunity.org/2023/formulas/mathematics/college/pthtgme3z242earl06wz6i1k2s4diz501b.png)
Add 7x - 4x
![x^2+3x-28](https://img.qammunity.org/2023/formulas/mathematics/college/cysipzm6bzsyiv1rtsc337ikavgudg1oaa.png)
Answer:
![x^2+3x-28](https://img.qammunity.org/2023/formulas/mathematics/college/cysipzm6bzsyiv1rtsc337ikavgudg1oaa.png)