Answer:
The probability that Kala will take an apple and Bradley will take an orange is:
![\begin{gathered} (1)/(6) \\ or \\ 16.67\text{\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/doq0b8lbcvw4js4kfuoozf5nc6mb2vreoa.png)
Step-by-step explanation:
We want to find the probability that Kala will take an apple and Bradley will take an orange.
Given:
![\begin{gathered} \text{Total number of fruits = 10} \\ A\text{pples =3} \\ \text{Oranges = 5} \\ \text{Bananas = 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/quszg9bxppbjl7rtgz2h2f7uzljrfph6ph.png)
Since there are no replacament, the probability that Kala picks apple is;
![P_1=(3)/(10)](https://img.qammunity.org/2023/formulas/mathematics/college/jt7rujqwkjjyhc1qas8wv92zuhv327o52c.png)
The probability that Bradley will take an orange is;
![P_2=(5)/(9)](https://img.qammunity.org/2023/formulas/mathematics/college/nlc7qo1356km2w77gnazu8k01chbj7a26q.png)
The probability that Kala will take an apple and Bradley will take an orange will be;
![\begin{gathered} P=P_1* P_2 \\ P=(3)/(10)*(5)/(9) \\ P=(15)/(90)=(1)/(6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l5l3jrgpsyzuta3ildo1anp6sprkv0heq8.png)
Therefore, the probability that Kala will take an apple and Bradley will take an orange is:
![(1)/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/s2sdjtchslkb90he84q1tkyhaenfcyiyvp.png)
As a percent the probability will be;
![\begin{gathered} (1)/(6)*100\text{\%} \\ =16.67\text{\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m7loyopkdyvf9ckiuptmwhusccynkdnvb7.png)