The given rational function is
![(16m^2)/(24m^7)](https://img.qammunity.org/2023/formulas/mathematics/college/koyub07p4yhfqtwzn6rc0k4440xjtaq1sp.png)
To simplify it we will divide 16 and 24 by their greatest common factor and subtract the powers of m
![16\rightarrow1*16,2*8,4*4](https://img.qammunity.org/2023/formulas/mathematics/college/fs5920nuh8scuyaky4llfcevdq5he1mmgc.png)
Then the factors of 16 are 1, 2, 4, 8, 16
![24\rightarrow1*24,2*12,3*8,4*6](https://img.qammunity.org/2023/formulas/mathematics/college/oe4co7qxn89ymardvtudr1ahrulehi46ac.png)
The factors of 24 are 1, 2, 3, 4, 6, 8, 12, 24
The common factors of 16 and 24 are 1, 2, 4, 8
The greatest one is 8
Then we will divide 16 and 24 by 8 to simplify the fraction
![\begin{gathered} (16m^2)/(24m^7)= \\ \\ ((16)/(8)m^2)/((24)/(8)m^7)= \\ \\ (2m^2)/(3m^7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a6x6yhoktb9kv8ytdhuprsgbyhn602w87p.png)
Now, we will subtract the powers of m
![(2m^2)/(3m^7)=(2)/(3)m^(2-7)=(2)/(3)m^(-5)](https://img.qammunity.org/2023/formulas/mathematics/college/l78fenism0wodrkzwa984u4wa5ny5owzcz.png)
To put the fraction in the simplest form we will write m^-5 by a positive power by changing its place from up to downing
![(2)/(3)m^(-5)=(2)/(3m^5)](https://img.qammunity.org/2023/formulas/mathematics/college/sxmn9h0584eam2kci1sesrort1cu4ubigt.png)
The answer is
![(16m^2)/(24m^7)=(2)/(3m^5)](https://img.qammunity.org/2023/formulas/mathematics/college/at1wklzvzk8owpp5w1uhx65fmg31317jme.png)