To solve this equation, we can proceed as follows:
![6.75+(3)/(8)x=13(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/ahduy91xfdp3ztqteiegw9klrl1xg7xb9z.png)
1. Subtract 6.75 to both sides of the equation:
![6.75-6.75+(3)/(8)x=13(1)/(4)-6.75\Rightarrow(3)/(8)x=13(1)/(4)-6.75](https://img.qammunity.org/2023/formulas/mathematics/college/sjoxsyh57q8tjijjqamxnidtsbs3nspzl1.png)
We can solve the right part of the equation using fractions as follows:
![6.75=6+(3)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/h7wkofxzpxsupsinhog90cmgdtbtyupq77.png)
We also know that
![13(1)/(4)=13+(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/srf97ex71md7zoeskpsmpbc0ez4n7w8rt1.png)
Then, we have:
![(3)/(8)x=13+(1)/(4)-(6-(3)/(4))=13-6+(1)/(4)-(3)/(4)=7+(1-3)/(4)_{}](https://img.qammunity.org/2023/formulas/mathematics/college/dsmu0o9nokj5r3jdgbx1yavpve9ge950hr.png)
![(3)/(8)x=7+(-(3)/(4))=7-(3)/(4)=(7\cdot4-3)/(4)=(28-3)/(4)_{}=(25)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/qb9otmmjpkgxq65fryex1hxw8y8lttz2m2.png)
Now, the equation is:
![(3)/(8)x=(25)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/9eh8wl65wbgducdpy9kolqlqkcwkcwxfw8.png)
We need to multiply by 8/3 to both sides to solve for x as follows:
![(8)/(3)\cdot(3)/(8)x=(8)/(3)\cdot(25)/(4)\Rightarrow x=(8)/(4)\cdot(25)/(3)\Rightarrow x=2\cdot(25)/(3)\Rightarrow x=(50)/(3)=16.6666666\ldots=16(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/f1zzos2uwu2qi2ubknyd1twk0qby15nj7m.png)
Therefore, the value for x is equal to:
![x=16(2)/(3)=(50)/(3)=16.6666666\ldots](https://img.qammunity.org/2023/formulas/mathematics/college/5u95cm6sbllycgkpx40x8zn2w5wx1xnld5.png)