217k views
4 votes
A positive integer is 5 less than another. If the sum of the reciprocal of a smaller and twice the reciprocal of the larger is 11/14, then find the two integers.

User Rkulla
by
8.4k points

1 Answer

2 votes

Given:

a.) A positive integer is 5 less than another.

b.) The sum of the reciprocal of a smaller and twice the reciprocal of the larger is 11/14.

From the given, let's generate the equation each of the givens represents.

Let,

x = The lesser number

y = The larger number

a.) A positive integer is 5 less than another.


\text{ x = y - 5}

b.) The sum of the reciprocal of a smaller and twice the reciprocal of the larger is 11/14.


(1)/(x)+2((1)/(y))\text{ = }(11)/(14)
(1)/(x)+\text{ }(2)/(y)=(11)/(14)

Step 1: Let's substitute x = y - 5 to the other equation to be able to find x.


(1)/(x)+\text{ }(2)/(y)=(11)/(14)\text{ }\rightarrow(1)/(y-5)+\text{ }(2)/(y)=(11)/(14)

Step 2: Let's simplify the equation, let's transform the two addends into a fraction with a common denominator. The common denominator will be y(y-5). We get,


(1)/(y-5)+\text{ }(2)/(y)=(11)/(14)\text{ }\rightarrow\text{ }((1)(y))/(y(y-5))\text{ + }((2)(y-5))/(y(y-5))\text{ = }(11)/(14)
\frac{y\text{ + 2y - 10}}{y^2-5y}\text{ = }(11)/(14)\text{ }\rightarrow\text{ (14)(}y\text{ + 2y - 10) = (11)(}y^2-5y)
14y+28y-140=11y^2\text{ - 55y}
42y-140=11y^2\text{ - 55y }\rightarrow11y^2\text{ - 55y - 42y + 140 = 0 }\rightarrow11y^2\text{ -97y + 140 = 0}

Step 2: Let's find the solution to the quadratic equation.


\text{y = }\frac{-b\text{ }\pm\text{ }\sqrt[]{b^2-4ac}}{2a}

From the given equation, a = 11, b = -97 and c = 140. Let's plug in the values.


\text{ y = }\frac{-b\text{ }\pm\text{ }\sqrt[]{b^2-4ac}}{2a}\text{ }\rightarrow\text{ y = }\frac{-(-97)\pm\text{ }\sqrt[]{(-97)^2-4(11)(140)}}{2(11)}
\text{ y = }\frac{97\pm\text{ }\sqrt[]{9,409^{}-6,160}}{22}\text{ }\rightarrow\text{ y = }\frac{97\pm\text{ }\sqrt[]{3249}}{22}
\text{ y = }\frac{97\text{ }\pm\text{ 57}}{22}
y_1\text{ = }\frac{97\text{ + 57}}{22}\text{ = }(154)/(22)\text{ = 7}
\text{ y}_2\text{ =}\frac{97\text{ - 57}}{22}=(40)/(22)\text{ = }(20)/(11)

Step 3: Let's substitute 7 and 20/11 to the equation if which among them is real and correct.

a.) At y = 7, x = y - 5 = 7 - 5 = 2


(1)/(x)+(2)/(y)\text{ = }(11)/(14)\text{ }\rightarrow\text{ }(1)/(2)+(2)/(7)=\text{ }(11)/(14)\text{ }\rightarrow\text{ }(7)/(14)+(4)/(14)\text{ = }(11)/(14)
(11)/(14)\text{ = }(11)/(14)

b.) At y = 20/11, x = x - 5 = 20/11 - 5 = 20/11 - 55/11 = -35/11


(1)/(x)+(2)/(y)\text{ = }(11)/(14)\text{ }\rightarrow\text{ }(1)/(-(35)/(11))+(2)/((20)/(11))=\text{ }(11)/(14)\text{ }\rightarrow\text{ -}(11)/(35)\text{ + }(2(11))/(20)\text{ = }(11)/(14)\text{ }\rightarrow\text{ -}(11)/(35)\text{ + }(22)/(20)\text{ = }(11)/(14)
((22)(35))/(700)\text{ - }((11)(20))/(700)=\text{ }(11)/(14)\text{ }\rightarrow\text{ }\frac{770\text{ - 220}}{700}\text{ = }(11)/(14)\text{ }\rightarrow\text{ }(550)/(700)\text{ = }(11)/(14)
((550)/(50))/((700)/(50))\text{ = }(11)/(14)\text{ }\rightarrow\text{ }(11)/(14)\text{ = }(11)/(14)

The integers that will satisfy the criteria.

Pair 1: Lesser number = 2 and the Larger number = 7

The second set of pairs is not to be considered integers because it has a concurrent decimal equivalent. A fraction can only be called an integer if it can be simplified into a whole number.

User Joe Lehmann
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories