Answer:
• 2x
,
• x-4
,
• x²+4x+16
Explanation:
Given the volume of a rectangular prism:
![V=2x^4-128x](https://img.qammunity.org/2023/formulas/mathematics/college/r5pgzcgggqx961op8rbaxq0xe3p6g46scg.png)
To determine the side lengths, we factor the expression for V.
![V=2x(x^3-64)=2x(x^3-4^3)](https://img.qammunity.org/2023/formulas/mathematics/college/npw8tfizz3mffh878jqc3dglphxmagb3oe.png)
Next, we factorize x³-4³ using the difference of two cubes rule:
![a^3-b^3=(a-b)(a^2+ab+b^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/7sf2cpf14qd3qb0fg7pwug1v42aaer4s17.png)
Therefore:
![x^3-4^3=(x-4)(x^2+4x+4^2)=(x-4)(x^2+4x+16)](https://img.qammunity.org/2023/formulas/mathematics/college/rskyfb960dgvvk2qkesyolo7fknuok5ljl.png)
The factored form of V is, therefore:
![V=2x(x-4)(x^2+4x+16)](https://img.qammunity.org/2023/formulas/mathematics/college/dm0tiwb6uiaidaun9dbg63egyl4r75tpym.png)
The lengths of the prism's sides are 2x, x-4 and x²+4x+16.