We have an algebraic expression and we have to express it in the form of a complex number.
To do that we have to take into account the definition of the imaginary number i:
![i=\sqrt[]{-1}](https://img.qammunity.org/2023/formulas/mathematics/college/prwnjpkamd054mvqxx3wkz9peqbswm21lz.png)
We can now work on the expression to find the complex number it represents:
![\begin{gathered} \frac{\sqrt[]{-3}}{\sqrt[]{-2}\cdot\sqrt[]{-5}} \\ \sqrt[]{-(3)/((-2)(-5))} \\ \sqrt[]{(-3)/(10)} \\ \sqrt[]{\frac{3\cdot(-1)_{}}{10}} \\ \sqrt[]{(3)/(10)}\cdot\sqrt[]{-1} \\ \sqrt[]{(3)/(10)}\cdot i \\ 0+\sqrt[]{(3)/(10)}i \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8meotyj6ulxocwc76urn897sb8q50b5lld.png)
Then, if we define the complex number as a + bi, then a=0 and b = √(3/10).
Answer: a=0 and b = √(3/10)