Given:
![f(x)=(-9x^7)/(3x^7)](https://img.qammunity.org/2023/formulas/mathematics/college/kaeurxhymto4r200cllrvti9ohwgt2v53b.png)
Required:
![We\text{ need to find the end behavior of f\lparen x\rparen as x}\rightarrow-\infty.](https://img.qammunity.org/2023/formulas/mathematics/college/fgapqyzbl6d1u3q49c9wati6mn75w9v95w.png)
Step-by-step explanation:
We know that the end behavior of a function is the behavior of the graph of f(x) as x approaches negative infinity.
Consider the given function.
![f(x)=(-9x^7)/(3x^7)](https://img.qammunity.org/2023/formulas/mathematics/college/kaeurxhymto4r200cllrvti9ohwgt2v53b.png)
Take limit on both sides.
![\lim_(x\to-\infty)f(x)=\lim_(x\to-\infty)((-9x^7)/(3x^7))](https://img.qammunity.org/2023/formulas/mathematics/college/unhsbjid2191cybjc98mhiwynpro0lznvl.png)
Cancel out the common multiple.
![\lim_(x\to-\infty)f(x)=\lim_(x\to-\infty)((-9)/(3))](https://img.qammunity.org/2023/formulas/mathematics/college/gt7vvguwr7ddrbn1slcqma14jmg90raidt.png)
![\lim_(x\to-\infty)f(x)=(-9)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/1bpjhgswinvfxnjadtmaqt58rk8mcoheye.png)
![\lim_(x\to-\infty)f(x)=-3](https://img.qammunity.org/2023/formulas/mathematics/college/m1hi3evayqb04dx4b71cfh9jlsmmeu8qbj.png)
The end behavior of f(x) is -3as x approaches negative infinity
Final answer:
![As\text{ x}\rightarrow-\infty,f(x)=-3](https://img.qammunity.org/2023/formulas/mathematics/college/9k8250wxfbg8lw4n2t7nrovp08z46ui98z.png)