Consider the formula,
![A=P(1+(r)/(100))^n](https://img.qammunity.org/2023/formulas/mathematics/high-school/sg4zk7ybldcrek0y9wnq377cpzs7p93hjn.png)
Here, P is the principal, r is the rate of interest, n is the number of periods, and A is the amount.
According to the problem, the compund interest is to be applied quarterly i.e 3 times per year, so the rate of interest is calculated as,
![r=(R)/(3)=(3.14)/(3)=(157)/(150)](https://img.qammunity.org/2023/formulas/mathematics/college/qxugwtbo1oyln2qegup3nq8gig3t1k9uhd.png)
Substitute the values and solve for 'n',
![\begin{gathered} 5341.12=3044(1+(157)/(150*100))^n \\ (1.0105)^n=1.755 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7l9dpvkjjl8fwpi41btqg8p47w7201y9oj.png)
Consider the formula,
![\ln (e^x)=e^(\ln x)=x](https://img.qammunity.org/2023/formulas/mathematics/college/ejs4tdhiznyedpf8idm4q1nqbknsyf8mcz.png)
Then the equation becomes,
![\begin{gathered} \ln (1.0105)^n=\ln (1.755) \\ n\ln (1.0105)=\ln (1.755) \\ n=(\ln (1.755))/(\ln (1.0105)) \\ n=53.85 \\ n\approx54 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/egl8k3v937uch8ie3q8tmxxks6ose176yl.png)
Thus, the required number of periods in 54.
The corresponding number of years will be 54 by 3 i.e. 18, since the compounding is done 3 time