125k views
5 votes
I need to verify identity functions for a one to one function.

I need to verify identity functions for a one to one function.-example-1
User DrBuck
by
7.0k points

1 Answer

7 votes

We have the function


f(x)=(x+6)^3

1. For f^-1:

Let y = f(x) = (x+6)^3

Switch x and y to get:


x=(y+6)^3

And solve for y


\begin{gathered} x^{(1)/(3)}=y+6 \\ x^{(1)/(3)}-6=y+6-6 \\ x^{(1)/(3)}-6=y \end{gathered}

And we have y = f^-1(x)

Answer blank 1:


f^(-1)(x)=x^{(1)/(3)}-6

2. For f o f^-1 (x):


(f\circ f^(-1))(x)=f(f^(-1)(x))

And solve


\begin{gathered} =f(x^{(1)/(3)}-6) \\ =(x^{(1)/(3)}-6+6)^3 \\ =(x^{(1)/(3)})^3 \\ =x \end{gathered}

answer blank 2


x^{(1)/(3)}-6

answer blank 3


x^{(1)/(3)}-6

answer blank 4


x^{(1)/(3)}

3. For f^-1 o f:


(f^(-1)\circ f)(x)=f^(-1)(f(x))

Solve


\begin{gathered} =f^(-1)((x+6)^3) \\ =\sqrt[3]{(x+6)^3}-6 \\ =x+6-6 \\ =x \end{gathered}

answer blank 5


(x+6)^3

answer blank 6


(x+6)^3

answer blank 7


x+6

User Darron
by
7.8k points