For this, you can first find the annual decrease factor, like this
*You can express the percentage like this
![35\text{ \%}=(35)/(100)=0.35](https://img.qammunity.org/2023/formulas/mathematics/college/te7wl6ou6qe21ba3ngmwstdm7uhhtis071.png)
*Then, for the annual decrease factor, you have
![\begin{gathered} 2500\cdot0.35=875 \\ 2500-875=1625\Rightarrow\text{ Population after one year} \\ \text{ So, the annual decrease factor is} \\ (2500)/(1625)=(20)/(13)\approx1.54 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pbp49wci7fzryobtumfwqxnfy78dlxb28n.png)
Now, the exponential decay is modeled by the equation
![\begin{gathered} y=ab^(-x) \\ \text{ Where} \\ a=\text{ initial population} \\ b=\text{ annual decrease factor} \\ x=\text{time in years} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jrzi4918waog3cs6otvr5pdsnadgn6dlr0.png)
So, then the exponential function to find the population of the city after x years is
![y=(2500)((20)/(13))^(-x)](https://img.qammunity.org/2023/formulas/mathematics/college/rq2zrqn5tbpwdsk0o7hqj14s0iw1sm6dy7.png)
Then, the population after 5 years will be
![\begin{gathered} y=(2500)((20)/(13))^(-5) \\ y=290.07 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qblkpnt8dc8o7mgvf1gv5nhw87p1lmd3m8.png)
Rounding, because there are no parts of people
![y=291](https://img.qammunity.org/2023/formulas/mathematics/college/xp0i47qirsrz63lkfswu9d477y78f817hg.png)
Therefore, the population after 5 years of this city will be 291 people.