ANSWER
15.18
Step-by-step explanation
If z varies directly as x, then the relationship between them is,
![z=kx](https://img.qammunity.org/2023/formulas/mathematics/college/ebaa8f83txvibzn21lf0exxyky8vhnsfkq.png)
But z also varies directly has y, so the relationship between z and these two variables is,
![z=k\cdot(x)/(y)](https://img.qammunity.org/2023/formulas/mathematics/college/fpvrwh58bzhjbz0xu7ljsrmvzb0jikcll0.png)
We have to find k, knowing that z = 51 when x = 36 and y = 3,
![\begin{gathered} 51=k\cdot(36)/(3) \\ \\ 51=k\cdot12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1ujx45ognromztiuvoz9lqyc06sb98oa4g.png)
Solving for k,
![k=(51)/(12)=(17)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/adzsriecqt1hxjve8kwb6828vhz89egfrr.png)
Thus, the relationship is,
![z=(17)/(4)\cdot(x)/(y)](https://img.qammunity.org/2023/formulas/mathematics/college/r4gjsmdyih7p8siwn7usp3tflkffhqzz9r.png)
Now, if x = 25 and y = 7, then z is,
![z=(17)/(4)\cdot(25)/(7)=(425)/(28)\approx15.18](https://img.qammunity.org/2023/formulas/mathematics/college/rjegeuun31k5acrqctvnmydj5dnbcuxdvb.png)
Hence, the value of z when x = 25 and y = 7 is 15.18, rounded to the nearest hundredth.