Given:
The resistances are
![\begin{gathered} R_1=5.0\text{ }\Omega \\ R_2=9.0\text{ }\Omega \\ R_3=4.0\text{ }\Omega \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/gp89sx3s7apjm47x7bwraua4n7eh2evfk2.png)
The potential of the battery is
![V=6.0\text{ V}](https://img.qammunity.org/2023/formulas/physics/high-school/t4wkkpn2bv4o23n8bqx3y1b8dy0k9nyxyk.png)
To find:
The current through the 4.0-ohm resistor
Step-by-step explanation:
The equivalent resistance of the circuit is,
![\begin{gathered} R_(eq)=R_1\parallel R_2+R_3 \\ =5.0\parallel9.0+4.0 \\ =(5.0*9.0)/(5.0+9.0)+4.0 \\ =3.2+4.0 \\ =7.2\text{ }\Omega \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/nmvchxaouifp3fijzz3pamggb4xcz6yglj.png)
The current in the circuit is,
![\begin{gathered} i=(V)/(R_(eq)) \\ =(6.0)/(7.2) \\ =0.83\text{ A} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/jfi2uut39smxcjnijt1g48jpy688q747fx.png)
For the series combination, the same current flows through the 4.0-ohm resistance and the parallel combination of 5.0 and 9.0-ohm resistances.
Hence, the current through 4.0 ohm is 0.83 A.