149k views
1 vote
Solve the following system of equations using an inverse matrix. You must alsoindicate the inverse matrix, A-1, that was used to solve the system. You mayoptionally write the inverse matrix with a scalar coefficient.5x-3y = 87x-5y=4

User Reynier
by
6.2k points

1 Answer

2 votes

Step 1:

Write the two equation

5x - 3y = 8

7x - 5y = 4

Step 2

Write in matrix form


\begin{gathered} \begin{bmatrix}{5} & {-3} \\ {7} & {-5}\end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{8} & {} \\ {4} & {}\end{bmatrix} \\ Inverse\text{ A}^(-1)\text{ = }(Adjoint)/(|A|) \\ A^(-1)\text{ = }\begin{bmatrix}{5} & {-3} \\ {7} & {-5}\end{bmatrix}^(-1) \\ \begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\text{ }\begin{bmatrix}{5} & {-3} \\ {7} & {-5}\end{bmatrix}^(-1)\begin{bmatrix}{8} & {} \\ {4} & {}\end{bmatrix} \end{gathered}

Step 3:


\begin{gathered} \begin{bmatrix}{5} & {-3} \\ {7} & -{5}\end{bmatrix} \\ Determinant\text{ = -25+21 = -4} \\ Cofactor\text{ = }\begin{bmatrix}{-5} & {-7} \\ {3} & {5}\end{bmatrix} \\ Adjoint\text{ = }\begin{bmatrix}{-5} & {3} \\ {-7} & {5}\end{bmatrix} \\ A^(-1)\text{ = }(1)/(-4)\begin{bmatrix}{-5} & {3} \\ {-7} & {5}\end{bmatrix} \end{gathered}

Step 4:


\begin{gathered} \begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}\text{ = }(1)/(-4)\begin{bmatrix}{-5} & {3} \\ {-7} & {5}\end{bmatrix}\begin{bmatrix}{8} & {} \\ {4} & {}\end{bmatrix} \\ =\text{ }(1)/(-4)\begin{bmatrix}{-40+12} & {} \\ {-56+20} & {}\end{bmatrix} \\ =\text{ }(1)/(-4)\begin{bmatrix}{-28} & {} \\ {-36} & {}\end{bmatrix} \\ \begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\text{ }\begin{bmatrix}{7} & {} \\ {9} & {}\end{bmatrix} \\ x\text{ = 7 , y = 9} \end{gathered}

Final answer


A^(-1)\text{ = }(1)/(-4)\begin{bmatrix}{-5} & {3} \\ {-7} & {5}\end{bmatrix}\text{ , x = 7 , y = 9}

User Jinesh Choksi
by
5.4k points