A unit vector has a module of 1.
We can calculate the coordinates of a unit vector in the direction of an specific vector by dividing the coordinates of that vector by the module.
Then, first we will calculate the module of the vector:
![\begin{gathered} |r|=\sqrt[]{x^2+y^2} \\ |r|=\sqrt[]{(-2)^2+(-1)^2} \\ |r|=\sqrt[]{4+1} \\ |r|=\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4ynlq09anisgn3tkkpu6try4ax6iq78tug.png)
We then can write the unit vector as:
![r=(-\frac{2}{\sqrt[]{5}},-\frac{1}{\sqrt[]{5}})=(-\frac{2\sqrt[]{5}}{5},-\frac{\sqrt[]{5}}{5})](https://img.qammunity.org/2023/formulas/mathematics/college/l0olbfwnayjrkqsy1by5q859hfm14fjtc6.png)
Answer: (-2√5/5, -√5/5)