Given the function:
![\: f\mleft(x\mright)=(x+1)/(\left(x-3\right)\left(x^2-1\right))](https://img.qammunity.org/2023/formulas/mathematics/college/yp3a8ggnnvbk8btswyir4qccp2j5arcz9i.png)
The end behaviour of the function f(x) describes the behaviour of the function as x approaches +∞ and -∞.
When x approaches +∞,
![\lim _(x\rightarrow\infty)f(x)=\text{ }\lim _(x\rightarrow\infty)(x+1)/((x-3)(x^2-1))=0](https://img.qammunity.org/2023/formulas/mathematics/college/my59cbpjf5i9zvx1jbuidvlz6na2pfep6z.png)
Thus, as x approaches +∞, the function f(x) approaches zero.
When x approaches -∞,
![\lim _(x\rightarrow-\infty)f(x)=\text{ }\lim _(x\rightarrow-\infty)(x+1)/((x-3)(x^2-1))=0](https://img.qammunity.org/2023/formulas/mathematics/college/9kae6fhqjbrnfct96pq1ahhq34lsk1wwzk.png)
Thus, as x approaches -∞, the function f(x) approaches zero.
x-value of the hole:
For a rational function f(x) given as
![f(x)=(p(x))/(q(x))](https://img.qammunity.org/2023/formulas/mathematics/college/qs745ui20x79pugzhchi3fqldapuxccwu9.png)
Provided that p(x) and q(x) have a common factor (x-a), the function f(x) will have a hole at x=a.
Thus, from the function f(x)
![f(x)=(x+1)/((x-3)(x^2-1))](https://img.qammunity.org/2023/formulas/mathematics/college/ib0luultwtgkxg8bd0rfjbhjud333q7d08.png)
by expansion, we have
![f(x)=\frac{x+1}{(x-3)(x^{}-1)(x+1)}](https://img.qammunity.org/2023/formulas/mathematics/college/7o672yav42ft5ak7q2yyhjum4zmo1r35jj.png)
The expression (x-1) is a common factor of the numerator and the denominator.
Thus,
![\begin{gathered} x-1=0 \\ \Rightarrow x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9jw921izi81i5zj8n9yqlah88z7uxm787h.png)
Hence, the x-value of the hole is 1.