We have the function f(t) defined as:
![f(x)=\int_3^xt^4dt](https://img.qammunity.org/2023/formulas/mathematics/college/vxkqrupjfa748pxngk8ft1yga1rkg7xdhf.png)
We have to find f'(x).
We can solve this integral as:
![f(x)=(t^5)/(5)|^x_3=(x^5)/(5)-(3^5)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/z7kp09uwjyfow5gojms11aeuz0vsx4fhbd.png)
If we derive this expression for f(x) we obtain:
![f^(\prime)(x)=(d)/(dx)((x^5)/(5)-(3^5)/(5))=(5)/(5)x^4+0=x^4](https://img.qammunity.org/2023/formulas/mathematics/college/gsb58e8ckzu6qgyp01zf4cxpx4dsn4hmkc.png)
NOTE: This expression could have been derived from the function inside the integral.
We can now find f'(3) as:
![f^(\prime)(3)=3^4=81](https://img.qammunity.org/2023/formulas/mathematics/college/yya1xjsvby87dstebfxp3q10v6n8wgg0ij.png)
Answer:
f'(x) = x^4
f'(3) = 81