Given:
The change in volume by time is, (dV/dt) = 10 cubic feet per minute.
The diameter and height of the right circular one are equal, 2r = h.
Height of the pile is, h = 21 ft.
The objective is to find the rate of increase in height of the pile.
Step-by-step explanation:
The general formula of volume of cone is,
![V=(1)/(3)\pi r^2h\text{ . . . . . (1)}](https://img.qammunity.org/2023/formulas/mathematics/college/a1ruibi8wcjpkr7to64d6hhitmsfnn4dxn.png)
From the given data, radius of the cone can be calculated as,
![\begin{gathered} 2r=h \\ r=(h)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6zv9zaa6algbhdwn1r60p3es1vv69fwxsv.png)
Substitute the value of r in equation (1).
![\begin{gathered} V=(1)/(3)\pi((h)/(2))^2h \\ V=(1)/(3)\pi((h^2)/(4))^{}h \\ V=(1)/(12)\pi h^3\text{ . . . . . (2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l69hcy2a4znr2wkzchxlmq7fv51v9e3lyp.png)
To find rate of increase in height of the pile:
Now, differentiate equation (2) with respect to time t.
![\begin{gathered} (dV)/(dt)=(\pi)/(12)*(d)/(dt)(h^3) \\ (dV)/(dt)=(\pi)/(12)*3h^2(dh)/(dt) \\ (dV)/(dt)=(\pi)/(4)* h^2(dh)/(dt)\text{ . . . . (3)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/if7km7j5dvls9nv4q9qfquax6wetyufm66.png)
Substitute (dV/dt) and h in equation (3).
On plugging the obtained values in eqation (3),
![\begin{gathered} 10=(\pi)/(4)*(21)^2(dh)/(dt) \\ \frac{dh}{\mathrm{d}t}=(10*4)/(21^2*\pi) \\ (dh)/(dt)=0.02887164\ldots.\text{.} \\ (dh)/(dt)\approx0.029\ldots\text{ ft/min} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tjnufmxkijr531pg2izzfh2gd0l1mlk496.png)
Hence, the rate of increase in height of the pile is 0.029 ft/min.